Molecular Recognition and Specificity of Biomolecules to Titanium Dioxide from MD Simulations

Titania (TiO2) is used extensively in biomedical applications; efforts to boost the biocompatibility of TiO2 include coating it with the titania binding hexamer, RKLPDA. To understand the binding mechanism of this peptide, we employ molecular dynamics simulations enhanced by metadynamics to study three amino acids present in the peptide – arginine (R), lysine (K), and aspartate (D), on four TiO2 variants that have different degrees of surface hydroxyl groups. We find that binding is a function of both sidechain charge and structure, with R binding to all four surfaces, whereas the affinity of K and D is dependent on the distribution of hydroxyl groups. Informed by this, we study the binding of the titania binding hexamer and 12mer (RKLPDAPGMHTW) on two of the four surfaces, and we see strong correlations between the binding free energy and the primary binding residues, in agreement with prior experiments and simulations. We propose that the discrepancies observed in prior work stem from distribution of surface hydroxyl groups that may be difficult to precisely control on the TiO2 interface.

Identifier
Source https://archive.materialscloud.org/record/2020.0048/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:385
Provenance
Creator Sampath, Janani; Pfaendtner, Jim
Publisher Materials Cloud
Publication Year 2020
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering