We present the results of optical spectroscopic follow-up of 125 candidate main sequence OB stars in the Small Magellanic Cloud (SMC) that were originally identified in the S^3^MC infrared imaging survey as showing an excess of emission at 24{mu}m indicative of warm dust, such as that associated with a transitional or debris disks. We use these long-slit spectra to investigate the origin of the 24{mu}m emission and the nature of these stars. A possible explanation for the observed 24{mu}m excess, that these are emission line stars with dusty excretion disks, is disproven for the majority of our sources. We find that 88 of these objects are normal stars without line emission, with spectral types mostly ranging from late-O to early-B; luminosity classes from the literature for a sub-set of our sample indicate that most are main-sequence stars. We further identify 17 emission-line stars, 7 possible emission-line stars, and 5 other objects with forbidden-line emission in our sample. We discover a new O6 Iaf star; it exhibits strong HeII4686{AA} emission but relatively weak NIII4640{AA} emission which we attribute to the lower nitrogen abundance in the SMC. Two other objects are identified with planetary nebulae, one with a young stellar object, and two with X-ray binaries. To shed additional light on the nature of the observed 24{mu}m excess we use optical and infrared photometry to estimate the dust properties of the objects with normal O and B star spectra and compare these properties to those of a sample of hot spots in the Galactic interstellar medium (ISM).
Cone search capability for table J/ApJ/771/111/dustyob (SMC dusty O and B stars: optical-IR photometry and spectral type and radial velocities)