Seawater carbonate chemistry and calcification of Lophelia pertusa during experiments, 2009

DOI

The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Supplement to: Maier, Cornelia; Hegeman, Jan; Weinbauer, Markus G; Gattuso, Jean-Pierre (2009): Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences, 6(8), 1671-1680

Identifier
DOI https://doi.org/10.1594/PANGAEA.767577
Related Identifier IsSupplementTo https://doi.org/10.5194/bg-6-1671-2009
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.767577
Provenance
Creator Maier, Cornelia ORCID logo; Hegeman, Jan; Weinbauer, Markus G ORCID logo; Gattuso, Jean-Pierre ORCID logo
Publisher PANGAEA
Contributor Nisumaa, Anne-Marin
Publication Year 2009
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 211384 https://cordis.europa.eu/project/id/211384 European Project on Ocean Acidification; Sixth Framework Programme https://doi.org/10.13039/100011103 Crossref Funder ID 511106 https://cordis.europa.eu/project/id/511106 European network of excellence for Ocean Ecosystems Analysis
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 7748 data points
Discipline Earth System Research