Post-AGB binaries are surrounded by massive disks of gas and dust that are similar to protoplanetary disks surrounding young stars. We assembled a catalog of all known Galactic post-AGB binaries with disks. We explore correlations between the different observables with the aim to learn more about potential disk-binary interactions. We compiled spectral energy distributions of 85 Galactic post-AGB binary systems. We built-up a color-color diagram to differentiate between the different disk morphologies traced by the characteristics of the infrared excess. We categorised different disk types and looked for correlations with other observational characteristics of these systems. 8 to 12% of our targets are surrounded by transition disks, i.e. disks having no or low near-infrared excesses. We find a strong link between these transition disks and the depletion of refractory elements seen on the surface of the post-AGB star. We interpret this correlation as evidence for the presence of a mechanism that stimulates the dust and gas separation within the disk and which also produces the transition disk structure. We propose that such a mechanism can be a giant planet carving a hole in the disk which traps the dust in the outer disk parts. We propose two disk evolutionary scenarios, depending on the presence of such a giant planet in the disk. We advocate that giant planets can successfully explain the correlation between the transition disks and the depletion of refractory materials observed in post-AGB binaries. If the planetary scenario is confirmed, disks around post-AGB binaries could be a unique laboratory to test planet-disk interactions and their influence on the late evolution of binary stars. Whether the planets are first or second generation also remains to be studied. We argue that these disks are the perfect place to study planet formation scenarios in an unprecedented parameter space.
Cone search capability for table J/A+A/658/A36/table1 (Full list of Galactic sources)