Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals

Many low-thermal-conductivity (κL) crystals show intriguing temperature (T) dependence of κL: κL∝T-1 (crystal-like) at intermediate temperatures whereas weak T-dependence (glass-like) at high temperatures. It has been in debate whether thermal transport can still be described by phonons at the Ioffe-Regel limit. In this work, we propose that most phonons are still well defined for thermal transport, whereas they carry heat via dual channels: “normal” phonons described by the Boltzmann transport equation theory and “diffuson-like” phonons described by the diffusion theory. Three physics-based criteria are incorporated into first-principles calculations to judge mode-by-mode between the two phonon channels. Case studies on La2Zr2O7 and Tl3VSe4 show that normal phonons dominate low temperatures while diffuson-like phonons dominate high temperatures. Our present dual-phonon theory enlightens the physics of hierarchical phonon transport as approaching the Ioffe-Regel limit, and provides a numerical method that should be practically applicable to many materials with vibrational hierarchy.

Identifier
Source https://archive.materialscloud.org/record/2020.0036/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:361
Provenance
Creator Luo, Yixiu; Yang, Xiaolong; Feng, Tianli; Wang, Jingyang; Ruan, Xiulin
Publisher Materials Cloud
Publication Year 2020
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering