High Li-ion conductivity in tetragonal LGPO: a comparative first-principles study against known LISICON and LGPS phases

This work presents extensive first-principles (Car-Parrinello) molecular dynamics simulations of the solid-state electrolyte Li10GeP2O12 (LGPO) in a tetragonal phase -not synthesized so far- that is isostructural to the highly Li-ion conductive tetragonal phase of the sulfide analogue Li10GeP2S12 (LGPS). We provide comparative simulations of the experimentally known orthorhombic phase of LGPO (that we call here LISICON, from the family of superionic conductors to which LGPO belongs) and of the two experimentally known phases of LGPS, quasi-orthorhombic (called thio-LISICON) and tetragonal. We extract diffusion coefficients from fixed-cell simulations in the canonical ensemble and we study dynamical stability from variable-cell simulations in the isobaric-isothermal ensemble. The main outcome of this work is that, according to these simulations, although tetragonal LGPO is less stable than its orthorhombic allotrope, it exhibits a much higher conductivity, comparable to that presently estimated for both phases of LGPS. These results indicate that hypothetical tetragonal LGPO, if synthesized, could make a very attractive Li-ion conductor.

Identifier
Source https://archive.materialscloud.org/record/2021.15
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:727
Provenance
Creator Materzanini, Giulliana; Kahle, Leonid; Marcolongo, Aris; Marzari, Nicola
Publisher Materials Cloud
Publication Year 2021
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering