M-dwarf Lum-Temp-Radius relationships

There is growing evidence that M-dwarf stars suffer radius inflation when compared to theoretical models, suggesting that models are missing some key physics required to completely describe stars at effective temperatures (TSED) less than about 4000K. The advent of Gaia DR2 distances finally makes available large datasets to determine the nature and extent of this effect.We employ an all-sky sample, comprising of >15000 stars, to determine empirical relation-ships between luminosity, temperature and radius.This is accomplished using only geometric distances and multiwave-band photometry, by utilising a modified spectral energy distribution fitting method. The radii we measure show an inflation of 3-7% compared to models, but nomore than a 1-2% intrinsic spread in the inflated sequence. We show that we are currently able to determine M-dwarf radii to an accuracy of 2.4% using our method. However, we determine that this is limited by the precision of metallicity measurements, which contribute 1.7% to the measured radius scatter. We also present evidence that stellar magnetism is currently unable to explain radius inflation in M-dwarfs.

Cone search capability for table VI/156/mdwarfp (Input data and fitted properties for stars in our (updated version, 16-Oct-2020))

Identifier
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/VI/156
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/VI/156
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=VI/156
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/VI/156
Provenance
Creator Morrell S.A.F; Naylor T.
Publisher CDS
Publication Year 2019
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy