Code for effective heat conductivity in thin porous media

DOI

This code can be used to determine the effective heat conductivity of a thin periodic porous medium by solving a two- or three-dimensional local cell problem on pore scale using the software Netgen/NGSolve. The pore geometry of the representative cell and the boundary conditions on top and bottom can be set by the user. The same holds for the heat conductivities of fluid and grain as well as numerical parameters. All parameters are set in 'settings.py', together with four example set-ups that are already implemented there (for further instructions please refer to 'Notes'). If needed one can display or export the solutions of the cell problems in vtk-format.

To run the code, make sure that all files are located in the same folder. Then either run 'netgen main.py' in this folder or run main.py directly in the NETGEN GUI (> Solve > Load Python). Numerical parameters as well as the dimensionality of the model and visualization parameters can be set in the function 'setUpGeneral' in 'settings.py'. The provided example functions 'setUpGeometryExample' account for all parameters regarding the geometrical setup (pore geometry, boundary conditions etc.). To implement user-specific set-ups one can either adapt the examples or implement new functions accordingly. Range restrictions for parameters are mentioned in 'settings.py'. Note that the code ensures the validity of the entered parameters by checking whether these restrictions are satisfied. To load the set parameters, the respective geometric setup needs to be selected in line 21 of 'main.py'. In case you have implemented new geometric set-up functions (in addition to 'setUpGeometryExample') they need to be added to the dict of options for quick access (line 13) first.

Identifier
DOI https://doi.org/10.18419/darus-2026
Related Identifier https://doi.org/10.1007/s11242-022-01746-y
Metadata Access https://darus.uni-stuttgart.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18419/darus-2026
Provenance
Creator Scholz, Lena ORCID logo; Bringedal, Carina ORCID logo
Publisher DaRUS
Contributor Bringedal, Carina
Publication Year 2021
Funding Reference DFG 327154368
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact Bringedal, Carina (Universität Stuttgart)
Representation
Resource Type Dataset
Format text/x-python
Size 4563; 2061; 6688; 2592; 3989
Version 2.1
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences