The complex non-collinear magnetic orderings in Ba2YOsO6: A new approach to tuning spin-lattice interactions and controlling magnetic orderings in frustrated complex oxides

Project abstract: Frustrated magnets are one class of fascinating materials that host many intriguing phases such as spin ice, spin liquid and complex long-range magnetic orderings at low temperatures. In this work we use first-principles calculations to find that in a wide range of magnetically frustrated oxides, at zero temperature a number of non-collinear magnetic orderings are more stable than the type-I collinear ordering that is observed at finite temperatures. The emergence of non-collinear orderings in those complex oxides is due to higher-order exchange interactions that originate from second-row and third-row transition metal elements. This implies a collinear-to-noncollinear spin transition at sufficiently low temperatures in those frustrated complex oxides. Furthermore, we find that in a particular oxide Ba2YOsO6, experimentally feasible uniaxial strain can tune the material between two different non-collinear magnetic orderings. Our work predicts new non- collinear magnetic orderings in frustrated complex oxides at very low temperatures and provides a mechanical route to tuning complex non-collinear magnetic orderings in those materials.

About this entry: We provide the input files of our DFT calculations for the studied complex oxides. The structures in POSCAR format and the INCAR files for all stabilized magnetic orderings in our study are all included. These files can be directly used into DFT calculations with VASP.

Identifier
Source https://archive.materialscloud.org/record/2019.0036/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:169
Provenance
Creator Fang, Yue-Wen; Chen, Hanghui
Publisher Materials Cloud
Publication Year 2019
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering